| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       |         |

# How Good Is My Diagnostic Test?

#### Mike Kokko

Thayer School of Engineering Dartmouth College Hanover, NH

Engineering in Medicine Seminar April 28, 2017



| le it a d              | mood test?                                                    |                            |               |
|------------------------|---------------------------------------------------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation 000000000000000000000000000000000000 | Emerging Technologies<br>0 | Summary<br>00 |

# 

| ls it a g    | ood test?                            |                    |                       |         |  |
|--------------|--------------------------------------|--------------------|-----------------------|---------|--|
| Introduction | Probabilistic Foundation             | Clinical Use Cases | Emerging Technologies | Summary |  |
| 000000       | 000000000000000000000000000000000000 | 00                 | 0                     | 00      |  |

Sensitivity



| ls it a g    | ood test?                |                    |                       |         |
|--------------|--------------------------|--------------------|-----------------------|---------|
| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
| 000000       |                          | 00                 | 0                     | 00      |

- Sensitivity
- Specificity



| ls it a ø              | rood test?               |                    |                            |               |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |

Sensitivity

ъ

- Specificity
- Accuracy



|              | read test?                              |                    |                       |         |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
| 000000       | 000000000000000000000000000000000000000 | 00                 |                       | 00      |
| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value

| Introduction | Probabilistic Foundation             | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------------------|--------------------|-----------------------|---------|
| 000000       | 000000000000000000000000000000000000 |                    | 0                     | 00      |
|              |                                      |                    |                       |         |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value
- Positive/Negative Likelihood Ratio

| Introduction<br>000000 | Probabilistic Foundation 000000000000000000000000000000000000 | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|---------------------------------------------------------------|----------------------------|---------------|
|                        |                                                               |                            |               |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value
- Positive/Negative Likelihood Ratio
- Diagnostic Odds Ratio

| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
|                        |                          |                            |               |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value
- Positive/Negative Likelihood Ratio
- Diagnostic Odds Ratio
- AUC (ROC Curve)



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       |         |
|              |                          |                    |                       |         |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value
- Positive/Negative Likelihood Ratio
- Diagnostic Odds Ratio
- AUC (ROC Curve)

## Which metrics are most appropriate?



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       |         |
|              |                          |                    |                       |         |

- Sensitivity
- Specificity
- Accuracy
- Positive/Negative Predictive Value
- Positive/Negative Likelihood Ratio
- Diagnostic Odds Ratio
- AUC (ROC Curve)

## Which metrics are most appropriate?

#### How do clinicians actually use this information?



| 000000       | 000000000000000000000000000000000000000 | 00                 |                       | 00      |  |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|--|
| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |  |

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?

| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| 000000       |                          | 00                 | 0                     | 00      |
|              |                          |                    |                       |         |

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?

## Probabilistic Foundation

- Visualizing study results
- Definition of metrics
- Implications for test development

| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| 000000       |                          | 00                 | 0                     | 00      |
|              |                          |                    |                       |         |

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?
- Probabilistic Foundation
  - Visualizing study results
  - Definition of metrics
  - Implications for test development

## 3 Clinical Use Cases



| Introduction | Probabilistic Foundation             | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------------------|--------------------|-----------------------|---------|
| 000000       | 000000000000000000000000000000000000 | 00                 | 0                     | 00      |
|              |                                      |                    |                       |         |

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?
- Probabilistic Foundation
  - Visualizing study results
  - Definition of metrics
  - Implications for test development
- 3 Clinical Use Cases
- 4 Emerging Technologies



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|--------------|--------------------------|--------------------|----------------------------|---------------|
|              |                          |                    |                            |               |

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?

## Probabilistic Foundation

- Visualizing study results
- Definition of metrics
- Implications for test development
- 3 Clinical Use Cases
- Emerging Technologies



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| ●00000       |                          | 00                 | 0                     | 00      |
| Diagno       | stic Tests               |                    |                       |         |



| Introduction<br>•00000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Diagnos                | stic Tests               |                    |                            |               |

• Measured quantity known to be strongly correlated with a (typically unobservable) condition of interest



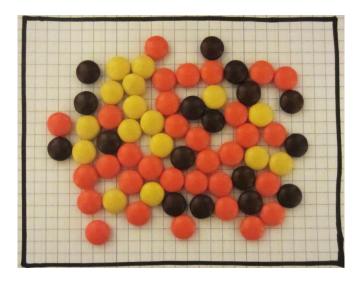
| Introduction<br>•00000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Diagno                 | stic Tests               |                    |                            |               |

- Measured quantity known to be strongly correlated with a (typically unobservable) condition of interest
- $\bullet$  Often a continuous measure (e.g. concentration in  $\mu g/dL)$  that produces a binary/dichotomous result when subjected to a set threshold



| Introduction<br>●00000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Diagnos                | stic Tests               |                    |                            |               |

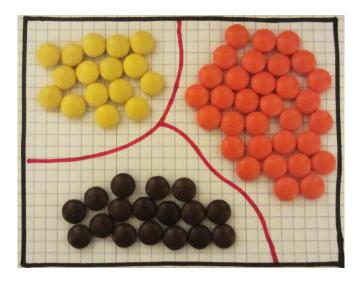
- Measured quantity known to be strongly correlated with a (typically unobservable) condition of interest
- $\bullet$  Often a continuous measure (e.g. concentration in  $\mu g/dL)$  that produces a binary/dichotomous result when subjected to a set threshold


#### Examples:

- Prostate-Specific Antigen Test (serum level, prostate cancer)
- Mammogram (imaging, breast cancer)
- Microbial Culture (microorganism growth, infection)
- Electrocardiogram (electrical activity, cardiac conditions)



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summ |
|--------------|--------------------------|--------------------|-----------------------|------|
| 00000        |                          |                    |                       |      |
|              |                          |                    |                       |      |


# Diagnostic Tests





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| 00000        |                          |                    |                       |         |
|              |                          |                    |                       |         |

# Diagnostic Tests

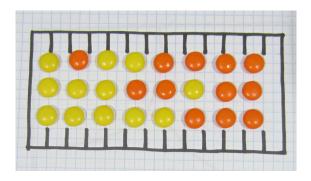




Clinical Use Cases

 $\underset{O}{\mathsf{Emerging Technologies}}$ 

Summary 00


# Diagnostic Tests

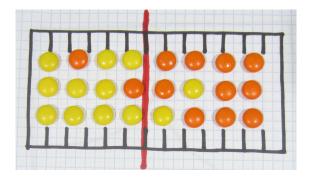


Index test: *Item*  $\rightarrow \mathbb{R}^1$ 



## Diagnostic Tests




Index test:  $Item \to \mathbb{R}^1$ Reference standard:  $Item \to \{0, 1\}$ 



Probabilistic Foundation Introduction 000000

Emerging Technologies

# **Diagnostic Tests**



Index test: *Item*  $\rightarrow \mathbb{R}^1$ **Reference standard:** *Item*  $\rightarrow$  {0, 1} Threshold:  $\mathbb{R}^1 \rightarrow \{0, 1\}$ 



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|

## **Diagnostic Tests**

#### Assumptions

- Condition and index test both *truly dichotomous*
- Existence of *perfect reference standard* for true diagnosis
- Independent application of reference standard and index test



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| ○○○○●○       |                          | 00                 | 0                     | 00      |
| Am I P       | regnant?                 |                    |                       |         |





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|--------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P       | regnant?                 |                    |                            |               |

• "It should tell me if I'm pregnant"





| Introduction<br>○○○○●○ | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P                 | regnant?                 |                    |                            |               |

- "It should tell me if I'm pregnant"
- $P(POS|PREG) \approx 1$





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|--------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P       | regnant?                 |                    |                            |               |

- "It should tell me if I'm pregnant"
- $P(POS|PREG) \approx 1$  (Sensitivity)





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|--------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P       | regnant?                 |                    |                            |               |

- "It should tell me if I'm pregnant"
- $P(POS|PREG) \approx 1$  (Sensitivity)
- $P(\sim POS | \sim PREG) \approx 1$  (Specificity)





| Introduction<br>○○○○○● | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P                 | regnant?                 |                    |                            |               |

• "Improved" Pregnancy Test in 3 Steps:





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| ○○○○○●       |                          | 00                 | 0                     | 00      |
| Am I P       | regnant?                 |                    |                       |         |

- "Improved" Pregnancy Test in 3 Steps:
  - 1. Measure circumference of abdomen  $(C_1)$





| Introduction<br>○○○○○● | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P                 | regnant?                 |                    |                            |               |

- "Improved" Pregnancy Test in 3 Steps:
  - 1. Measure circumference of abdomen  $(C_1)$
  - 2. Wait 120 days





| Introduction<br>○○○○○● | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Am I P                 | regnant?                 |                    |                            |               |

- "Improved" Pregnancy Test in 3 Steps:
  - 1. Measure circumference of abdomen  $(C_1)$
  - 2. Wait 120 days
  - 3. Measure circumference of abdomen again  $(C_2)$





4日 + 4日 + 4日 + 4日 + 1000

| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| ○○○○○●       |                          | 00                 | 0                     | 00      |
| Am I P       | regnant?                 |                    |                       |         |

- "Improved" Pregnancy Test in 3 Steps:
  - 1. Measure circumference of abdomen  $(C_1)$
  - 2. Wait 120 days
  - 3. Measure circumference of abdomen again  $(C_2)$

• Test value = 
$$\Delta C = C_2 - C_1$$

#### • Positive result if $\Delta C \ge 10$ cm





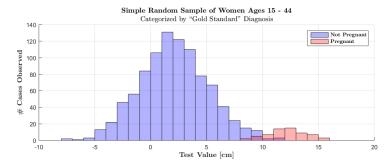
| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       |         |
|              |                          |                    |                       |         |

## Outline

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?

### Probabilistic Foundation


- Visualizing study results
- Definition of metrics
- Implications for test development

#### 3 Clinical Use Cases



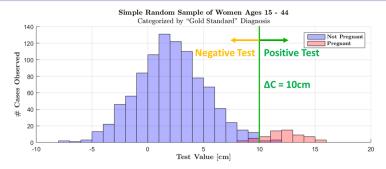


## Visualizing Study Results





<ロト < 個ト < 目ト < 目ト 三目目 のへの</p>

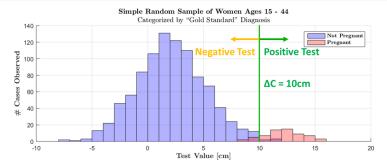

Probabilistic Foundation

Clinical Use Case

Emerging Technologies

Summary 00

# Visualizing Study Results






Probabilistic Foundation 

**Emerging Technologies** 

# Visualizing Study Results



|      |            | Gold Standard (Truth) |                |      |  |  |
|------|------------|-----------------------|----------------|------|--|--|
|      |            | A ~A Total            |                |      |  |  |
|      | В          | <b>TP:</b> 55         | FP: 5          | 60   |  |  |
| Test | ~ <b>B</b> | <b>FN:</b> 7          | <b>TN:</b> 933 | 940  |  |  |
|      | Total      | 62                    | 938            | 1000 |  |  |



Probabilistic Foundation Emerging Technologies Visualizing Study Results



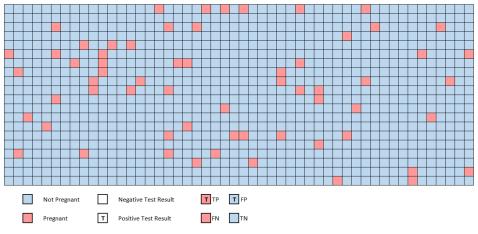
Not Pregnant

Negative Test Result

Т



Pregnant


Positive Test Result



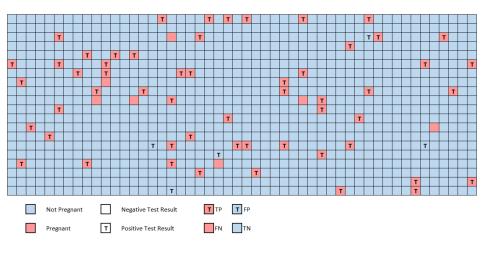


Inspiration for visualization from Silver 2012

Introduction Probabilistic Foundation Clinical Use Cases of Summary of Summary of Summary of Study Results






Probabilistic Foundation

Clinical Use Case

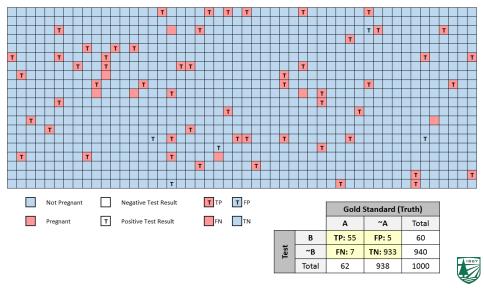
 $\underset{O}{\mathsf{Emerging Technologies}}$ 

Summary 00

## Visualizing Study Results






Probabilistic Foundation

Clinical Use Case

Emerging Technologies

Summary 00

## Visualizing Study Results

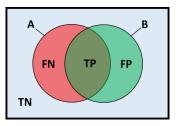


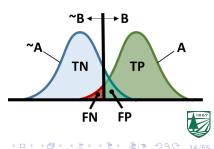
| Introduction |  |
|--------------|--|
|              |  |

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies


Summary 00


# Definition of Metrics

**Event A:** Subject truly pregnant **Event B:** Test positive (i.e.  $\Delta C \ge 10$ cm)

|      |       | Gold Standard (Truth) |                |      |  |  |
|------|-------|-----------------------|----------------|------|--|--|
|      |       | A ~A Total            |                |      |  |  |
|      | В     | TP: 55                | FP: 5          | 60   |  |  |
| Test | ~B    | FN: 7                 | <b>TN:</b> 933 | 940  |  |  |
|      | Total | 62                    | 938            | 1000 |  |  |

Reminiscent of hypothesis testing?





| Introduction |
|--------------|
|              |

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

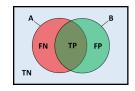
Summar 00

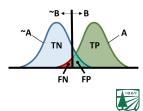
# Definition of Metrics

### Sensitivity

How likely is a patient to test **positive** if s/he has the condition?

"Positivity in disease"


$$P(B|A) = \frac{TP}{TP + FN}$$


Alternate names:

- True positive rate
- Power
- 1 − β

$$P(B|A) = \frac{55}{55+7} = 88.7\%$$

|      |       | Gold Standard (Truth) |         |      |  |  |
|------|-------|-----------------------|---------|------|--|--|
|      |       | A ~A Total            |         |      |  |  |
|      | В     | TP: 55                | FP: 5   | 60   |  |  |
| Test | ~B    | FN: 7                 | TN: 933 | 940  |  |  |
|      | Total | 62                    | 938     | 1000 |  |  |





< □ > < @ > < 注 > < 注 > 注 = の Q ○ 15/55

Clinical Use Cases

Emerging Technologies

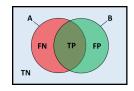
Summary 00

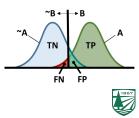
# Definition of Metrics

## Specificity

How likely is a patient to test **negative** if s/he **does not have** the condition?

"Negativity in the absence of disease"


$$P(\sim B|\sim A) = \frac{TN}{TN + FP}$$


Alternate names:

- Selectivity
- True negative rate
- 1 − α

$$P(\sim B | \sim A) = \frac{933}{933 + 5} = 99.5\%$$

|      |       | Gold Standard (Truth) |         |      |  |  |
|------|-------|-----------------------|---------|------|--|--|
|      |       | A ~A Total            |         |      |  |  |
|      | В     | TP: 55                | FP: 5   | 60   |  |  |
| Test | ~B    | FN: 7                 | TN: 933 | 940  |  |  |
|      | Total | 62                    | 938     | 1000 |  |  |





|          | 000000000000000000000000000000000000000 | 00 | 0 | 00 |
|----------|-----------------------------------------|----|---|----|
| Definiti | ion of Metrics                          |    |   |    |

#### Summary: Sensitivity and Specificity

Sensitivity: 
$$P(B|A) = \frac{TP}{TP + FN}$$
  
Specificity:  $P(\sim B|\sim A) = \frac{TN}{TN + FP}$ 

#### Pros

- Direct properties of test\*
- No explicit dependence on prevalence\*
- Paired metrics describe both inclusive and exclusive actions

#### <u>Cons</u>

- Affected by patient/disease spectrum
- Not always intuitive
- Not the most relevant quantities for prediction/diagnosis



| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Definit                | ion of Metrics           |                    |                            |               |

$$P(B|A) \longrightarrow P(A|B)$$
  
 $P(\sim B|\sim A) \longrightarrow P(\sim A|\sim B)$ 



| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
| Definiti               | on of Metrics            |                            |               |

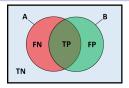
$$P(B|A) \longrightarrow P(A|B)$$

$$P(\sim B | \sim A) \longrightarrow P(\sim A | \sim B)$$



Probabilistic Foundation

Clinical Use Cases


Emerging Technologies

Summary 00

# Definition of Metrics

$$P(B|A) \longrightarrow P(A|B)$$

$$P(\sim B \mid \sim A) \longrightarrow P(\sim A \mid \sim B)$$



$$P(B|A) = rac{P(A \cap B)}{P(A)}$$
 and  $P(A|B) = rac{P(B \cap A)}{P(B)}$ 



Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

Summar 00

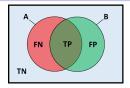
# Definition of Metrics

$$P(B|A) \longrightarrow P(A|B)$$
  
 $P(\sim B|\sim A) \longrightarrow P(\sim A|\sim B)$ 

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \text{ and } P(A|B) = \frac{P(B \cap A)}{P(B)}$$
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \text{ (Bayes' Rule)}$$



Probabilistic Foundation


Clinical Use Cases

Emerging Technologies

Summar 00

# Definition of Metrics

$$P(B|A) \longrightarrow P(A|B)$$
  
 $P(\sim B|\sim A) \longrightarrow P(\sim A|\sim B)$ 



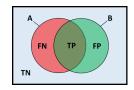
$$P(B|A) = \frac{P(A \cap B)}{P(A)} \text{ and } P(A|B) = \frac{P(B \cap A)}{P(B)}$$
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \text{ (Bayes' Rule)}$$
$$= \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)} \text{ (by LOTP)}$$

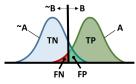


| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |

## Definition of Metrics

### Positive Predictive Value (PPV)


How likely is a patient to **have** the condition if s/he tests **positive**?


$$P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|\sim A)P(\sim A)}$$
$$= \frac{TP}{TP + FP}$$

P(B|A) = Sensitivity  $P(A) = \text{Prevalence} = \frac{TP + FN}{TP + TN + FP + FN}$   $P(B|\sim A) = (1 - \text{Spec.}) = \text{False Pos. Rate} = \alpha$   $P(\sim A) = (1 - \text{Prevalence})$ 

$$P(A|B) = \frac{55}{55+5} = 91.7\%$$

|      |       | Gold Standard (Truth) |         |      |  |  |
|------|-------|-----------------------|---------|------|--|--|
|      |       | A ~A Total            |         |      |  |  |
| Test | В     | TP: 55                | FP: 5   | 60   |  |  |
|      | ~B    | FN: 7                 | TN: 933 | 940  |  |  |
|      | Total | 62                    | 938     | 1000 |  |  |





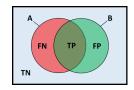


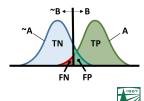
<ロト < 母ト < ヨト < ヨト 三国国 のへで 19/5

| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |

## Definition of Metrics

#### Negative Predictive Value (NPV)


How likely is a patient to **not have** the condition if s/he tests **negative**?


$$P(\sim A | \sim B) = \frac{P(\sim B | \sim A) P(\sim A)}{P(\sim B | \sim A) P(\sim A) + P(\sim B | A) P(A)}$$
$$= \frac{TN}{TN + FN}$$

$$P(\sim B|\sim A) =$$
 Specificity  
 $P(\sim A) = (1 - Prevalence)$   
 $P(\sim B|A) = (1 - Sens.) =$  False Neg. Rate =  $\beta$   
 $P(A) =$  Prevalence

$$P(A|B) = \frac{933}{933+7} = 99.3\%$$

|      |       | Gold Standard (Truth) |         |       |
|------|-------|-----------------------|---------|-------|
|      |       | А                     | ~A      | Total |
| Test | В     | TP: 55                | FP: 5   | 60    |
|      | ~B    | FN: 7                 | TN: 933 | 940   |
|      | Total | 62                    | 938     | 1000  |





三日 のへで

- A 🗐 🕨

(日)

|                        | on of Metrics            |                    |                            |               |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |

#### Summary: Positive and Negative Predictive Values

PPV: 
$$P(A|B) = \frac{TP}{TP + FP}$$
  
NPV:  $P(\sim A|\sim B) = \frac{TN}{TN + FN}$ 

#### Pros

- Paired metrics describe both inclusive and exclusive actions
- Relevant to prediction (diagnosis of individual patients)

#### <u>Cons</u>

- Explicit dependence on prevalence
- Computation for prediction neither straightforward nor intuitive



| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Definiti               | on of Metrics            |                    |                            |               |

 $LR \triangleq \frac{\text{likelihood of result if patient has condition}}{\text{likelihood of result if patient does not have condition}}$ 



 $LR \triangleq \frac{\text{likelihood of result if patient has condition}}{\text{likelihood of result if patient does not have condition}}$ 

#### One likelihood ratio for each test result {B, $\sim$ B}:

$$+LR = \frac{P(B|A)}{P(B|\sim A)} = \frac{\text{Sens}}{1 - \text{Spec}} = \frac{TP(TN + FP)}{FP(TP + FN)} = \frac{TP}{FP} \cdot \frac{P(\sim A)}{P(A)}$$



 $LR \triangleq \frac{\text{likelihood of result if patient has condition}}{\text{likelihood of result if patient does not have condition}}$ 

#### One likelihood ratio for each test result {B, $\sim$ B}:

$$+LR = \frac{P(B|A)}{P(B|\sim A)} = \frac{Sens}{1 - Spec} = \frac{TP(TN + FP)}{FP(TP + FN)} = \frac{TP}{FP} \cdot \frac{P(\sim A)}{P(A)}$$
$$-LR = \frac{P(\sim B|A)}{P(\sim B|\sim A)} = \frac{1 - Sens}{Spec} = \frac{FN(TN + FP)}{TN(TP + FN)} = \frac{FN}{TN} \cdot \frac{P(\sim A)}{P(A)}$$



▲□▶ ▲圖▶ ▲ 몰▶ ▲ 몰▶ 몰|= のQQ

 $LR \triangleq \frac{\text{likelihood of result if patient has condition}}{\text{likelihood of result if patient does not have condition}}$ 

#### One likelihood ratio for each test result {B, $\sim$ B}:

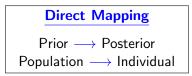
$$+LR = \frac{P(B|A)}{P(B|\sim A)} = \frac{Sens}{1 - Spec} = \frac{TP(TN + FP)}{FP(TP + FN)} = \frac{TP}{FP} \cdot \frac{P(\sim A)}{P(A)}$$
$$-LR = \frac{P(\sim B|A)}{P(\sim B|\sim A)} = \frac{1 - Sens}{Spec} = \frac{FN(TN + FP)}{TN(TP + FN)} = \frac{FN}{TN} \cdot \frac{P(\sim A)}{P(A)}$$
$$+LR = \frac{0.8871}{1 - 0.9947} = 167$$
$$-LR = \frac{1 - 0.8871}{0.9947} = 0.11$$



| Introduction<br>000000 | Probabilistic Foundation |  | Emerging Technologies<br>0 | Summary<br>00 |  |  |  |
|------------------------|--------------------------|--|----------------------------|---------------|--|--|--|
| Definit                | Definition of Metrics    |  |                            |               |  |  |  |

#### Plugging +LR into PPV and -LR into NPV Formulas:

$$PPV = P(A|B) = \frac{(+LR) \cdot P(A)}{(+LR) \cdot P(A) + P(\sim A)}$$
$$NPV = P(\sim A|\sim B) = \frac{P(\sim A)}{P(\sim A) + (-LR) \cdot P(A)}$$




Fagan 1975, Deeks and Altman 2004

| Introduction<br>000000 | Probabilistic Foundation |  | Emerging Technologies<br>0 | Summary<br>00 |  |  |
|------------------------|--------------------------|--|----------------------------|---------------|--|--|
| Definit                | Definition of Metrics    |  |                            |               |  |  |

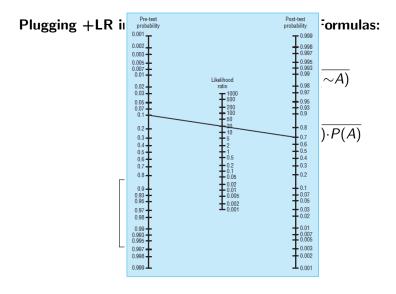
#### Plugging +LR into PPV and -LR into NPV Formulas:

$$P(A|B) = \frac{(+LR) \cdot P(A)}{(+LR) \cdot P(A) + P(\sim A)}$$
$$P(\sim A|\sim B) = \frac{P(\sim A)}{P(\sim A) + (-LR) \cdot P(A)}$$







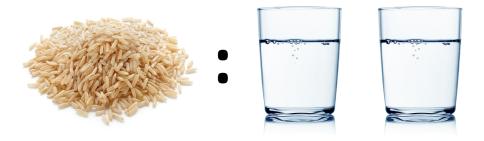

Probabilistic Foundation

Clinical Use Case

Emerging Technologies

Summary 00

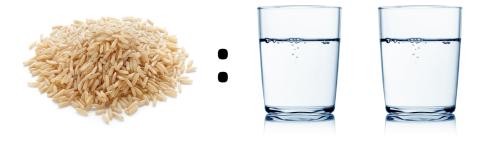
# Definition of Metrics




| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
| Odds v                 | s. Probability           |                            |               |



http://recipesbyrose.com https://hilliardstudiomethod.com Introduction Probabilistic Foundation Clinical Use Cases Emerging Technologies Summary


## Odds vs. Probability



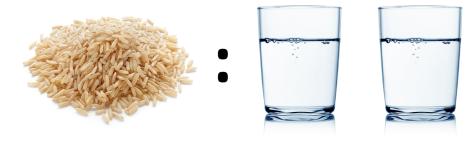


http://recipesbyrose.com https://hilliardstudiomethod.com Introduction Probabilistic Foundation Clinical Use Cases Emerging Technologies Summary

## Odds vs. Probability



#### Odds of Rice: 1:2 = 0.5




http://recipesbyrose.com https://hilliardstudiomethod.com

<ロ><日><日><日</th><日</th><日</th><日</th><0<</th><24/55</th>

Introduction Probabilistic Foundation Clinical Use Cases Emerging Technologies Summary

## Odds vs. Probability



#### Odds of Rice: 1:2 = 0.5

Probability of Rice: 
$$\frac{1}{3} = 0.33$$



http://recipesbyrose.com https://hilliardstudiomethod.com

<ロ><日><日><日</th><日</th><日</th><日</th><0<</th><24/55</th>

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies o

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Summary 00

Odds vs. Probability

# **\***:\*\*\*\*\*\*\*\*\*\*\*\*\*\*



http://www.clipartall.com

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

Summary 00

Odds vs. Probability

# 

Odds of Disease: 1:19 = 0.053



http://www.clipartall.com

<ロト < 母 > < 臣 > < 臣 > 三国 の Q O 2

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

Summary 00

Odds vs. Probability

# **\*:**\*\*\*\*\*\*\*\*\*\*\*\*\*\*

#### Odds of Disease: 1:19 = 0.053

Probability of Disease: 
$$\frac{1}{20} = 0.050$$



Probabilistic Foundation Clinical Use Cases Emerging Technologies 

## Odds vs. Probability

$$\mathsf{Odds} = \frac{\mathsf{Probability}}{1 - \mathsf{Probability}} = \frac{\mathsf{P}(\mathsf{Event})}{\mathsf{P}(\sim\mathsf{Event})}$$

$$\mathsf{Probability} = \frac{\mathsf{Odds}}{1 + \mathsf{Odds}}$$



| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
| Definiti               | on of Metrics            |                            |               |

#### Define Prior and Posterior Odds of Having Condition:

Prior Odds = 
$$\frac{TP + FN}{FP + TN} = \frac{P(A)}{P(\sim A)}$$



| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Definiti               | on of Metrics            |                    |                            |               |

#### Define Prior and Posterior Odds of Having Condition:

Prior Odds = 
$$\frac{TP + FN}{FP + TN} = \frac{P(A)}{P(\sim A)}$$
  
Posterior Odds = 
$$\begin{cases} \frac{TP}{FP} = \frac{P(A|B)}{P(\sim A|B)} & \text{if test result is positive} \\ \frac{FN}{TN} = \frac{P(A|\sim B)}{P(\sim A|\sim B)} & \text{if test result is negative} \end{cases}$$



| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
| Definiti               | on of Metrics            |                            |               |

$$\frac{P(A|B)}{P(\sim A|B)} = \frac{1}{P(\sim A|B)} \cdot \frac{P(B|A)P(A)}{P(B)}$$



| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Definiti               | ion of Metrics           |                    |                            |               |

$$\frac{P(A|B)}{P(\sim A|B)} = \frac{1}{P(\sim A|B)} \cdot \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{P(\sim A|B)P(B)}$$



| Introduction | Probabilistic Foundation             | Emerging Technologies | Summary |
|--------------|--------------------------------------|-----------------------|---------|
| 000000       | ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ | O                     | 00      |
| Definit      | ion of Metrics                       |                       |         |

$$\frac{P(A|B)}{P(\sim A|B)} = \frac{1}{P(\sim A|B)} \cdot \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{P(\sim A|B)P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{\left(\frac{P(B|\sim A)P(\sim A)}{P(B)}\right)P(B)}$$



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | 00 |
|--------------|--------------------------|--------------------|-----------------------|----|
| 000000       |                          | 00                 | 0                     | OO |
| Definit      | ion of Metrics           |                    |                       |    |

$$\frac{P(A|B)}{P(\sim A|B)} = \frac{1}{P(\sim A|B)} \cdot \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{P(\sim A|B)P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{\left(\frac{P(B|\sim A)P(\sim A)}{P(B)}\right)P(B)}$$
$$P(A)$$

$$=(+LR)rac{P(A)}{P(\sim A)}$$



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| 000000       |                          | 00                 | 0                     | 00      |
| Definiti     | ion of Metrics           |                    |                       |         |

$$\frac{P(A|B)}{P(\sim A|B)} = \frac{1}{P(\sim A|B)} \cdot \frac{P(B|A)P(A)}{P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{P(\sim A|B)P(B)}$$
$$= \frac{(+LR) \cdot P(B|\sim A)P(A)}{\left(\frac{P(B|\sim A)P(\sim A)}{P(B)}\right)P(B)}$$
$$= (+LR)\frac{P(A)}{P(\sim A)}$$

Posterior  $Odds = (+LR) \cdot (Prior Odds)$ 



| Definiti               | on of Metrics            |                    |                            |               |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |

 $\frac{P}{P(}$ 

$$\frac{(A|\sim B)}{\sim A|\sim B)} = \frac{1}{P(\sim A|\sim B)} \cdot \frac{P(\sim B|A)P(A)}{P(\sim B)}$$
$$= \frac{(-LR) \cdot P(\sim B|\sim A)P(A)}{P(\sim A|\sim B)P(\sim B)}$$
$$= \frac{(-LR) \cdot P(\sim B|\sim A)P(A)}{\left(\frac{P(\sim B|\sim A)P(\sim A)}{P(\sim B)}\right)P(\sim B)}$$
$$= (-LR)\frac{P(A)}{P(\sim A)}$$

Posterior  $Odds = (-LR) \cdot (Prior Odds)$ 



| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
| <b>D</b> (1 ) )        | 6 <b>1</b> 1             |                            |               |

## Definition of Metrics

#### Summary: Positive and Negative Likelihood Ratios

+LR: 
$$\frac{P(B|A)}{P(B|\sim A)} = \frac{Sens}{1 - Spec} = \frac{TP(TN + FP)}{FP(TP + FN)}$$
  
-LR: 
$$\frac{P(\sim B|A)}{P(\sim B|\sim A)} = \frac{1 - Sens}{Spec} = \frac{FN(TN + FP)}{TN(TP + FN)}$$
$$\frac{P(A|\sim B)}{P(\sim A|\sim B)} = (LR)\frac{P(A)}{P(\sim A)}$$

### <u>Pros</u>

- Paired metrics describe both inclusive and exclusive actions
- No explicit dependence on prevalence\*
- Intuitive effect on odds
- Extensible beyond binary

<u>Cons</u>

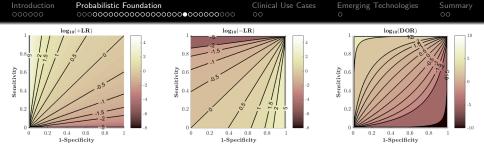
- +LR = 0 if TP = 0; -LRundefined if TN = 0
- Thinking in terms of odds can be confusing
- Prediction requires estimate of prior odds



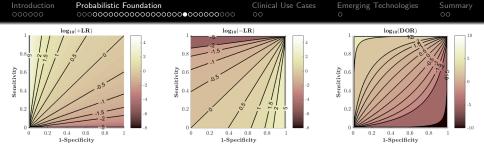
| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Definit                | ion of Metrics           |                    |                            |               |

### Summary: Diagnostic Odds Ratio

DOR: 
$$\frac{+LR}{-LR} = \frac{\text{Sens} \cdot \text{Spec}}{(1 - \text{Sens})(1 - \text{Spec})} = \frac{TP \cdot TN}{FP \cdot FN}$$
$$\boxed{\text{DOR} = \frac{933 \cdot 55}{5 \cdot 7} = 1466}$$


### **Pros**

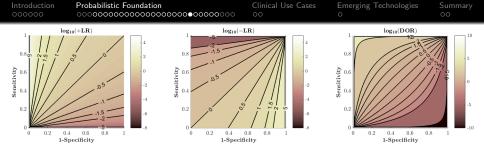
- Single number characterization
- No explicit dependence on prevalence\*


### <u>Cons</u>

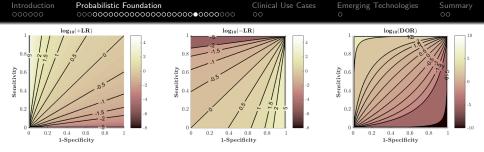
- Unable to distinguish between inclusive and exclusive actions
- Not always intuitive
- Not the most relevant quantity for prediction/diagnosis



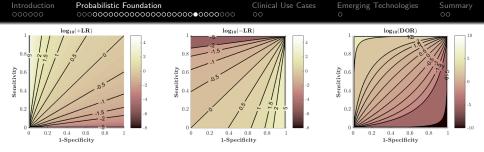





















Definition of Metrics



### Summary: ROC Analysis

AUC: Area under plot of Sens vs. (1-Spec.) for all possible threshold values

### Pros

- Single number characterization (AUC)
- Visualization of trade-off between inclusive and exclusive action
- Independent of actual threshold choice

### <u>Cons</u>

- AUC is not trajectory-specific
- Not always intuitive
- Not the most relevant quantity for prediction/diagnosis



Clinical Use Cases

Emerging Technologies

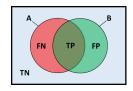
Summary 00

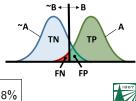
# Definition of Metrics

### **Overall Accuracy**

How frequently does the **test** make the correct classification?

Average of sensitivity and specificity, weighted by prevalence


$$P(B|A)P(A) + P(\sim B|\sim A)P(\sim A) = \frac{TP + TN}{TP + TN + FP + FN}$$


Alternate names:

- Diagnostic Accuracy
- Test Efficiency
- Rand Index

$$P(B|A)P(A) + P(\sim B|\sim A)P(\sim A) = \frac{55 + 933}{55 + 933 + 5 + 7} = 98.8\%$$

|      |       | Gold   | Standard ( | Truth) |
|------|-------|--------|------------|--------|
|      |       | А      | ~A         | Total  |
|      | В     | TP: 55 | FP: 5      | 60     |
| Test | ~B    | FN: 7  | TN: 933    | 940    |
|      | Total | 62     | 938        | 1000   |





(日)

|          |                       | 00 | 0 | 00 |  |  |
|----------|-----------------------|----|---|----|--|--|
| Definiti | Definition of Metrics |    |   |    |  |  |

### Summary: Overall Accuracy

$$P(B|A)P(A) + P(\sim B|\sim A)P(\sim A) = \frac{TP + TN}{TP + TN + FP + FN}$$

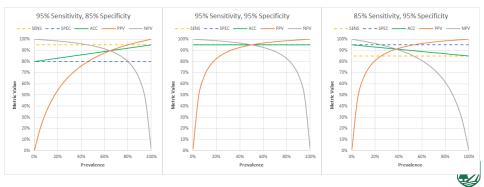
### **Pros**

- Single number characterization
- Intuitive meaning

#### <u>Cons</u>

- Unable to distinguish between inclusive and exclusive actions
- Not the most relevant quantity for prediction/diagnosis
- Explicit dependence on prevalence






#### **Dependence on Prevalence**

$$\mathsf{Prevalence} = P(A) = \Pi$$

$$\mathsf{Accuracy} = \mathsf{Sens} \cdot \mathsf{\Pi} + \mathsf{Spec} \cdot (1 - \mathsf{\Pi})$$

$$PPV = \frac{Sens \cdot \Pi}{Sens \cdot \Pi + (1 - Spec)(1 - \Pi)}$$
$$NPV = \frac{Spec \cdot (1 - \Pi)}{Spec \cdot (1 - \Pi) + (1 - Sens) \cdot \Pi}$$



| Introduction | Probabilistic Foundation             |   | Emerging Technologies | Summary |
|--------------|--------------------------------------|---|-----------------------|---------|
| 000000       | ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ |   | 0                     | 00      |
| Los de la se | C. T. D. J.                          | 1 |                       |         |

• Even prevalence-independent metrics affected by spectrum: easier to discriminate when A and  $\sim A$  are farther apart



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 月 ■ ● ● ●

| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
|                        |                          |                            |               |

- Even prevalence-independent metrics affected by spectrum: easier to discriminate when A and ~A are farther apart
- Study design is very important
  - Some journals have guidelines for diagnostic test validation (e.g. STARD Statement: stard-statement.org)
  - Case-control studies not recommended for validating diagnostic tests
  - Case group (A): multiple severities, various anatomic/pathological sizes
  - Control group (~A): same process in different location, different process in same location



▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● 月 ■ ● ● ●

| Introduction |    | Emerging Technologies | Summary |
|--------------|----|-----------------------|---------|
| 000000       | 00 | V                     | 00      |

- Even prevalence-independent metrics affected by spectrum: easier to discriminate when A and ~A are farther apart
- Study design is very important
  - Some journals have guidelines for diagnostic test validation (e.g. STARD Statement: stard-statement.org)
  - Case-control studies not recommended for validating diagnostic tests
  - Case group (A): multiple severities, various anatomic/pathological sizes
  - Control group (~A): same process in different location, different process in same location
- Choosing the best metric
  - Discrimination or prediction?
  - Select threshold weighing costs of FN, FP (ROC analysis)
  - Can establish confidence intervals for each metric and run hypothesis tests (see Altman 2000)



| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |



| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |

- Sensitivity: 88.7%
- Specificity: 99.5%



| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%



| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
|              | 000000000000000000000000000000000000000 |                    |                       |         |
|              |                                         |                    |                       |         |

#### By the numbers:

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%
- Positive Likelihood Ratio: 167
- Negative Likelihood Ratio: 0.11



| Introduction Probabilistic Foundation   | Clinical Use Cases | Emerging Technologies | Summary |
|-----------------------------------------|--------------------|-----------------------|---------|
| 000000 00000000000000000000000000000000 |                    |                       |         |

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%
- Positive Likelihood Ratio: 167
- Negative Likelihood Ratio: 0.11
- Diagnostic Odds Ratio: 1466



| Introduction Probabilistic Foundation   | Clinical Use Cases | Emerging Technologies | Summary |
|-----------------------------------------|--------------------|-----------------------|---------|
| 000000 00000000000000000000000000000000 |                    |                       |         |

#### By the numbers:

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%
- Positive Likelihood Ratio: 167
- Negative Likelihood Ratio: 0.11
- Diagnostic Odds Ratio: 1466
- AUC: 0.997



| roduction Probabilistic Foundation      | Clinical Use Cases | Emerging Technologies | Summary |
|-----------------------------------------|--------------------|-----------------------|---------|
| 0000 0000000000000000000000000000000000 |                    |                       |         |

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%
- Positive Likelihood Ratio: 167
- Negative Likelihood Ratio: 0.11
- Diagnostic Odds Ratio: 1466
- AUC: 0.997
- Overall Accuracy: 98.8%



#### By the numbers:

- Sensitivity: 88.7%
- Specificity: 99.5%
- Positive Predictive Value: 91.7%
- Negative Predictive Value: 99.3%
- Positive Likelihood Ratio: 167
- Negative Likelihood Ratio: 0.11
- Diagnostic Odds Ratio: 1466
- AUC: 0.997
- Overall Accuracy: 98.8%

But... is it actually a good test?



| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>00 |
|------------------------|--------------------------|----------------------------|---------------|
|                        |                          |                            |               |

### Outline

### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?
- Probabilistic Foundation
  - Visualizing study results
  - Definition of metrics
  - Implications for test development

### Clinical Use Cases

4 Emerging Technologies



Introduction Probabilistic Foundation Clinical Use Cases of Summar of Summar

### Clinical Use Cases

#### **Typical Thought Process**



ъ



https://totallyaddconnect.com/wp-content/uploads/2012/10/RickSlideRule.jpg

| Clinical     |                                         |                    |                       |         |
|--------------|-----------------------------------------|--------------------|-----------------------|---------|
| 000000       | 000000000000000000000000000000000000000 | 0                  |                       | 00      |
| Introduction | Probabilistic Foundation                | Clinical Use Cases | Emerging Technologies | Summary |

### Clinical Use Cases

### **Typical Thought Process**

What is the patient's pre-test probability?





#### Clinical Use Cases ●○

Emerging Technologies

Summar 00

# Clinical Use Cases

### **Typical Thought Process**

- What is the patient's pre-test probability?
- Is testing appropriate?
  - Will test result change recommended treatment?
  - What are patient's treatment goals?
  - Is pre-test probability near treatment threshold?





# Clinical Use Cases

### **Typical Thought Process**

- What is the patient's pre-test probability?
- Is testing appropriate?
  - Will test result change recommended treatment?
  - What are patient's treatment goals?
  - Is pre-test probability near treatment threshold?
- Which test is most appropriate?
  - What costs are associated with FNs and FPs?
  - Examine +LR for ruling-in condition or -LR for ruling-out





1= 9QC

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies o Summary 00

# Clinical Use Cases

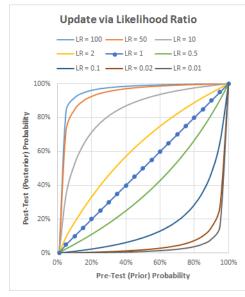
#### **Typical Thought Process**

- What is the patient's pre-test probability?
- Is testing appropriate?
  - Will test result change recommended treatment?
  - What are patient's treatment goals?
  - Is pre-test probability near treatment threshold?
- Which test is most appropriate?
  - What costs are associated with FNs and FPs?
  - Examine +LR for ruling-in condition or -LR for ruling-out
- What do the test results mean for this particular patient?

 $https://totallyaddconnect.com/wp-content/uploads/2012/10/RickSlideRule.jpg \label{eq:started} totallyaddconnect.com/wp-content/uploads/2012/10/RickSlideRule.jpg \label{eq:started} totallyaddconnect.com/wp-content/uploads/2012/10/RickSlide$ 






ELE DQC

obabilistic Foundation

Clinical Use Cases ⊙● Emerging Technologies

Summary 00

# Clinical Use Cases





| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       |         |
|              |                          |                    |                       |         |

# Outline

#### Introduction

- What is a diagnostic test?
- Motivational example: Am I pregnant?
- Probabilistic Foundation
  - Visualizing study results
  - Definition of metrics
  - Implications for test development

#### 3 Clinical Use Cases

4 Emerging Technologies



Introduction Probabilistic Foundation Clinical Use Cases on Probabilistic Foundation October Clinical Use Cases October Clinical

#### Emerging Diagnostic Technologies

# LETTER

dol:10.1038/nature 21056

# Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteval\*, Brett Kuprel\*, Roberto A. Novoa<sup>2,3</sup>, Justin Ko<sup>2</sup>, Susan M. Swetter<sup>2,4</sup>, Helen M. Blau<sup>5</sup> & Sebastian Thrun<sup>6</sup>

Skin cancer, the most common human malignancy<sup>1-3</sup>, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated dassification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs)<sup>45</sup> show potential for general and highly variable tasks across many fine-grained object categories<sup>1-17</sup>. images (for example, smartphone images) exhibit variability in factors such as zoom, angle and lighting, making classification substantially more challenging<sup>32,34</sup>. We overcome this challenge by using a datadriven approach—1.41 million pre-training and training images make classification robust to photographic variability. Many previous techniques require extensive preprocessing, lesion segmentation and extraction of domain-specific visual features before classification. By contrast, our system requires no hand-crafted features; it is trained

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの



Esteva, et. al. 2017; https://www.technologyreview.com

De

wit

Andre

Skin ca diagno

and fol

histopa

lesions

variabi

neural

variab

Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

Sumr 00

# **Emerging Diagnostic Technologies**

variable tasks across many fine-grained object categories<sup>6-11</sup> Here we demonstrate classification of skin lesions using a single CNN, trained end-to-end from images directly, using only pixels and disease labels as inputs. We train a CNN using a dataset of 129,450 clinical images-two orders of magnitude larger than previous datasets<sup>12</sup>-consisting of 2,032 different diseases. We test its performance against 21 board-certified dermatologists on biopsy-proven clinical images with two critical binary classification use cases: keratinocyte carcinomas versus benign seborrheic keratoses; and malignant melanomas versus benign nevi. The first case represents the identification of the most common cancers, the second represents the identification of the deadliest skin cancer. The CNN achieves performance on par with all tested experts across both tasks, demonstrating an artificial intelligence capable of classifying skin cancer with a level of competence comparable to dermatologists. Outfitted with deep neural networks, mobile devices can potentially extend the reach of dermatologists outside of the clinic. It is projected that 6.3 billion smartphone subscriptions will

ture 21056

in factors stantially ig a datag images previous ation and ation. By is trained



Probabilistic Foundation

Clinical Use Cases

Emerging Technologies

ure 21056

in factors

stantially

a data-

images

previous

ation and

ation. By

s trained

Summary 00



46/55

| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>●0 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Summa                  | ary                      |                    |                            |               |

• Most metrics derived from a 2x2 confusion matrix



| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
|              |                          |                    |                       | •0      |
|              |                          |                    |                       |         |

# Summary

|        |    | Referen                                                                                                                                                    | ce Standard                                                                                                        | Prediction / D                                                                                                                                                                                                                                 | lingnosis                                                                    |
|--------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|        |    | A                                                                                                                                                          | $\sim A$                                                                                                           | Frediction / L                                                                                                                                                                                                                                 | Jagnosis                                                                     |
| c Test | в  | тр                                                                                                                                                         | FP                                                                                                                 | Pos. Pred. Value (PPV)<br>$P(A B) = \frac{TP}{TP + FP}$ False Disc. Rate (FDR)<br>$P(\sim A B) = \frac{FP}{TP + FP}$                                                                                                                           | Posterior Odds (+)<br>$\frac{P(A B)}{P(\sim A B)} = \frac{TP}{FP}$           |
| Index  | ~B | FN                                                                                                                                                         | TN                                                                                                                 | $\begin{array}{l} \mbox{False Omis. Rate (FOR)} \\ P(A {\sim}B) = \frac{FN}{TN+FN} \\ \mbox{Neg. Pred. Value (NPV)} \\ P({\sim}A {\sim}B) = \frac{TN}{TN+FN} \end{array}$                                                                      | Posterior Odds (-)<br>$\frac{P(A \sim B)}{P(\sim A \sim B)} = \frac{FN}{TN}$ |
|        |    | $\begin{array}{c} \text{Sensitivity} \\ P(B A) = \frac{TP}{TP+FN} \\ \hline \\ \text{False Neg. Rate (FNR)} \\ P(\sim B A) = \frac{FN}{TP+FN} \end{array}$ | False Pos. Rate (FPR)<br>$P(B \sim A) = \frac{FP}{TN + FP}$ Specificity<br>$P(\sim B \sim A) = \frac{TN}{TN + FP}$ | $\begin{split} & \text{Pos. Likelihood Ratio (+LR)} \\ & \frac{P(B A)}{P(B \sim A)} = \frac{TP(TN+FP)}{FP(TP+FN)} \\ & \text{Neg. Likelihood Ratio (-LR)} \\ & \frac{P(\sim B A)}{P(\sim B \sim A)} = \frac{FN(TN+FP)}{TN(TP+FN)} \end{split}$ | Diagnostic Odds Ratio<br>$\frac{+LR}{-LR} = \frac{TP \cdot TN}{FP \cdot FN}$ |
|        |    |                                                                                                                                                            | I Accuracy<br>$P(\sim A) = \frac{TP + TN}{TP + TN + FP + FN}$                                                      | Discrimination                                                                                                                                                                                                                                 | / Sorting                                                                    |



| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>•0 |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Summa                  | iry                      |                    |                            |               |

- Most metrics derived from a 2x2 confusion matrix
- Discrimination (sorting) vs. prediction (diagnosis)



| Introduction<br>000000 | Probabilistic Foundation 000000000000000000000000000000000000 | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>●0 |
|------------------------|---------------------------------------------------------------|--------------------|----------------------------|---------------|
| Summa                  | arv                                                           |                    |                            |               |

- Most metrics derived from a 2x2 confusion matrix
- Discrimination (sorting) vs. prediction (diagnosis)
- Metrics only as good as their validation studies



| Summa                  |                          |                    |                            |               |
|------------------------|--------------------------|--------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies<br>0 | Summary<br>●0 |

- Most metrics derived from a 2x2 confusion matrix
- Discrimination (sorting) vs. prediction (diagnosis)
- Metrics only as good as their validation studies
- Sensitivity and specificity of primary importance for discrimination, though ±LR may be more intuitive



| Summa        |                          | 00                 | 0                     |         |
|--------------|--------------------------|--------------------|-----------------------|---------|
| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |

- Most metrics derived from a 2x2 confusion matrix
- Discrimination (sorting) vs. prediction (diagnosis)
- Metrics only as good as their validation studies
- Sensitivity and specificity of primary importance for discrimination, though ±LR may be more intuitive
- Clinical diagnosis follows a Bayesian framework



| Summa                  |                          |                            |               |
|------------------------|--------------------------|----------------------------|---------------|
| Introduction<br>000000 | Probabilistic Foundation | Emerging Technologies<br>0 | Summary<br>●0 |

- Most metrics derived from a 2x2 confusion matrix
- Discrimination (sorting) vs. prediction (diagnosis)
- Metrics only as good as their validation studies
- Sensitivity and specificity of primary importance for discrimination, though ±LR may be more intuitive
- Clinical diagnosis follows a Bayesian framework
- Good scientific and clinical judgment is crucial in development, selection, and application of diagnostic tests



Inspired by table at: https://en.wikipedia.org/wiki/Confusion\_matrix < 🗇 > < 🗄 > < 🗄 > 🗏 = 🔗 ...

| Introduction | Probabilistic Foundation | Clinical Use Cases | Emerging Technologies | Summary |
|--------------|--------------------------|--------------------|-----------------------|---------|
| 000000       |                          | 00                 | 0                     | ⊙●      |
| Acknow       | ledgments                |                    |                       |         |

#### Dartmouth Biomedical Engineering Center Staff

- Prof. Doug Van Citters, PhD
- Prof. John Collier, PhD
- Dr. Michael Mayor, MD
- Barbara Currier
- John Currier
- Lindsay Holdcroft

#### **Dartmouth Biomedical Engineering Center Students**

- Ryan Chapman
- Kathleen Lewicki
- Audrey Martin
- Fiolida Prifti

#### **Special Clinical Consultant**

Dr. Sarah Kokko, MD

Images included for illustrative purposes only under assumed fair Use  $\langle \Box \rangle \langle \Xi \rangle$ 



#### References I

A. J. Alberg et al. "The use of "overall accuracy" to evaluate the validity of screening or diagnostic tests". In: *J Gen Intern Med* 19.5 Pt 1 (2004), pp. 460–5. ISSN: 0884-8734 (Print) 0884-8734 (Linking). DOI: 10.1111/j.1525-1497.2004.30091.x. URL: http://www.ncbi.nlm.nih.gov/pubmed/15109345.



D. G. Altman and J. M. Bland. "Diagnostic tests. 1: Sensitivity and specificity". In: *BMJ* 308.6943 (1994), p. 1552. ISSN: 0959-8138 (Print) 0959-535X (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/8019315.



D. G. Altman and J. M. Bland. "Diagnostic tests 2: Predictive values". In: BMJ 309.6947 (1994), p. 102. ISSN: 0959-8138 (Print) 0959-535X (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/8038641.



D. G. Altman and J. M. Bland. "Diagnostic tests 3: receiver operating characteristic plots". In: *BMJ* 309.6948 (1994), p. 188. ISSN: 0959-8138 (Print) 0959-535X (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/8044101.



Douglas G. Altman. *Statistics with confidence : confidence intervals and statistical guidelines.* 2nd. London?: BMJ Books, 2000, xii, 240 p. ISBN: 0727913751.



# References II

Sarah Boslaugh. *Statistics in a nutshell*. 2nd. In a nutshell. Farnham, Surrey, England: O'Reilly, 2012, xix, 569 p. ISBN: 9781449316822 (pbk.) 1449316824 (pbk.)



 H. Brenner and O. Gefeller. "Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence". In: *Stat Med* 16.9 (1997), pp. 981-91. ISSN: 0277-6715 (Print) 0277-6715 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/9160493.

Ronald Christensen. *Bayesian ideas and data analysis : an introduction for scientists and statisticians.* Chapman and Hall/CRC texts in statistical science series. Boca Raton, FL: CRC Press, 2011, xvii, 498 p. ISBN: 9781439803547 (hardcover alk. paper) 1439803544 (hardcover alk. paper).



Kevin Chu. "An introduction to sensitivity, specificity, predictive values and likelihood ratios". In: *Emergency Medicine* 11.3 (1999), pp. 175–181. ISSN: 1442-2026. DOI: 10.1046/j.1442-2026.1999.00041.x. URL: http://dx.doi.org/10.1046/j.1442-2026.1999.00041.x.



# References III

- J. J. Deeks and D. G. Altman. "Diagnostic tests 4: likelihood ratios". In: BMJ 329.7458 (2004), pp. 168–9. ISSN: 1756-1833 (Electronic) 0959-535X (Linking). DOI: 10.1136/bmj.329.7458.168. URL: http://www.ncbi.nlm.nih.gov/pubmed/15258077.



A. Esteva et al. "Dermatologist-level classification of skin cancer with deep neural networks". In: *Nature* 542.7639 (2017), pp. 115–118. ISSN: 1476-4687 (Electronic) 0028-0836 (Linking). DOI: 10.1038/nature21056. URL: http://www.ncbi.nlm.nih.gov/pubmed/28117445.



P. Eusebi. "Diagnostic accuracy measures". In: Cerebrovasc Dis 36.4 (2013), pp. 267-72. ISSN: 1421-9786 (Electronic) 1015-9770 (Linking). DOI: 10.1159/000353863. URL: http://www.ncbi.nlm.nih.gov/pubmed/24135733.



T. J. Fagan. "Letter: Nomogram for Bayes theorem". In: *N Engl J Med* 293.5 (1975), p. 257. ISSN: 0028-4793 (Print) 0028-4793 (Linking). DOI: 10.1056/NEJM197507312930513. URL: http://www.ncbi.nlm.nih.gov/pubmed/1143310.



#### **References IV**

- Tom Fawcett. "An introduction to ROC analysis". In: Pattern Recognition Letters 27.8 (2006), pp. 861-874. ISSN: 0167-8655. DOI: http://doi.org/10.1016/j.patrec.2005.10.010. URL: http://www.sciencedirect.com/science/article/pii/S016786550500303X.

C. M. Florkowski. "Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests". In: *Clin Biochem Rev* 29 Suppl 1 (2008), S83-7. ISSN: 0159-8090 (Print) 0159-8090 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/18852864.

G. M. Gaddis and M. L. Gaddis. "Introduction to biostatistics: Part 3, Sensitivity, specificity, predictive value, and hypothesis testing". In: Ann Emerg Med 19.5 (1990), pp. 591-7. ISSN: 0196-0644 (Print) 0196-0644 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/2331107.



 C. J. Gill, L. Sabin, and C. H. Schmid. "Why clinicians are natural bayesians".
 In: *BMJ* 330.7499 (2005), pp. 1080-3. ISSN: 1756-1833 (Electronic) 0959-535X (Linking). DOI: 10.1136/bmj.330.7499.1080. URL: http://www.ncbi.nlm.nih.gov/pubmed/15879401.



#### References V

- S. A. Leachman and G. Merlino. "Medicine: The final frontier in cancer diagnosis". In: *Nature* 542.7639 (2017), pp. 36–38. ISSN: 1476-4687 (Electronic) 0028-0836 (Linking). DOI: 10.1038/nature21492. URL: http://www.ncbi.nlm.nih.gov/pubmed/28150762.

M. M. Leeflang, P. M. Bossuyt, and L. Irwig. "Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis". In: *J Clin Epidemiol* 62.1 (2009), pp. 5–12. ISSN: 1878-5921 (Electronic) 0895-4356 (Linking). DOI: 10.1016/j.jclinepi.2008.04.007. URL: http://www.ncbi.nlm.nih.gov/pubmed/18778913.

L. D. Maxim, R. Niebo, and M. J. Utell. "Screening tests: a review with examples". In: *Inhal Toxicol* 26.13 (2014), pp. 811–28. ISSN: 1091-7691 (Electronic) 0895-8378 (Linking). DOI: 10.3109/08958378.2014.955932. URL: http://www.ncbi.nlm.nih.gov/pubmed/25264934.

M. J. Pencina et al. "Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond". In: *Stat Med* 27.2 (2008), pp. 157-72, 157-72. ISSN: 0277-6715 (Print) 0277-6715 (Linking). DOI: 10.1002/sim.2929. URL: http://www.ncbi.nlm.nih.gov/pubmed/17569110.



# References VI

David Martin Ward Powers. "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation". In: *International Journal of Machine Learning Technology* 2.1 (2011), pp. 37–63.



D. F. Ransohoff and A. R. Feinstein. "Problems of spectrum and bias in evaluating the efficacy of diagnostic tests". In: N Engl J Med 299.17 (1978), pp. 926-30. ISSN: 0028-4793 (Print) 0028-4793 (Linking). DOI: 10.1056/NEJM197810262991705. URL: http://www.ncbi.nlm.nih.gov/pubmed/692598.



A. W. Rutjes et al. "Evaluation of diagnostic tests when there is no gold standard. A review of methods". In: *Health Technol Assess* 11.50 (2007), pp. iii, ix-51. ISSN: 1366-5278 (Print) 1366-5278 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/18021577.



Nate Silver. The signal and the noise : why so many predictions fail-but some don't. New York: Penguin Press, 2012, 534 p. ISBN: 9781594204111.

A. M. Simundic. "Measures of Diagnostic Accuracy: Basic Definitions". In: *EJIFCC* 19.4 (2009), pp. 203-11. ISSN: 1650-3414 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/27683318.



# References VII

J. A. Swets. "Measuring the accuracy of diagnostic systems". In: Science 240.4857 (1988), pp. 1285–93. ISSN: 0036-8075 (Print) 0036-8075 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/3287615.



B. H. Willis. "Spectrum bias-why clinicians need to be cautious when applying diagnostic test studies". In: Fam Pract 25.5 (2008), pp. 390-6. ISSN: 1460-2229 (Electronic) 0263-2136 (Linking). DOI: 10.1093/fampra/cmn051. URL: http://www.ncbi.nlm.nih.gov/pubmed/18765409.



M. H. Zweig and G. Campbell. "Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine". In: *Clin Chem* 39.4 (1993), pp. 561-77. ISSN: 0009-9147 (Print) 0009-9147 (Linking). URL: http://www.ncbi.nlm.nih.gov/pubmed/8472349.

