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Is it a good test?

Sensitivity

Specificity

Accuracy

Positive/Negative Predictive Value

Positive/Negative Likelihood Ratio

Diagnostic Odds Ratio

AUC (ROC Curve)

Which metrics are most appropriate?

How do clinicians actually use this information?
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Outline

1 Introduction
What is a diagnostic test?
Motivational example: Am I pregnant?

2 Probabilistic Foundation
Visualizing study results
Definition of metrics
Implications for test development

3 Clinical Use Cases

4 Emerging Technologies
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Diagnostic Tests

What is a Diagnostic Test?

Measured quantity known to be strongly correlated with a
(typically unobservable) condition of interest

Often a continuous measure (e.g. concentration in µg/dL)
that produces a binary/dichotomous result when subjected to
a set threshold

Examples:

Prostate-Specific Antigen Test (serum level, prostate cancer)

Mammogram (imaging, breast cancer)

Microbial Culture (microorganism growth, infection)

Electrocardiogram (electrical activity, cardiac conditions)

Gill, et. al. 2005
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Diagnostic Tests

Index test: Item→ R1

Reference standard: Item→ {0, 1}
Threshold: R1 → {0, 1}
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Diagnostic Tests

Assumptions

Condition and index test both truly dichotomous

Existence of perfect reference standard for true diagnosis

Independent application of reference standard and index test
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Am I Pregnant?

What makes a good pregnancy test?

“It should tell me if I’m pregnant”

P(POS |PREG ) ≈ 1 (Sensitivity)

P(∼POS |∼PREG ) ≈ 1 (Specificity)

http://www.firstresponse.com
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Am I Pregnant?

“Improved” Pregnancy Test in 3 Steps:

1. Measure circumference of abdomen (C1)
2. Wait 120 days
3. Measure circumference of abdomen again (C2)

Test value = ∆C = C2 − C1

Positive result if ∆C ≥ 10cm

http://www.privatepregnancy.co.uk
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Inspiration for visualization from Silver 2012
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Definition of Metrics

Event A: Subject truly pregnant
Event B: Test positive (i.e. ∆C ≥ 10cm)

Reminiscent of hypothesis testing?
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Definition of Metrics

Sensitivity

How likely is a patient to test positive if s/he
has the condition?

”Positivity in disease”

P(B|A) =
TP

TP + FN

Alternate names:

True positive rate

Power

1− β

P(B|A) =
55

55 + 7
= 88.7%
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Definition of Metrics

Specificity

How likely is a patient to test negative if s/he
does not have the condition?

”Negativity in the absence of disease”

P(∼B|∼A) =
TN

TN + FP

Alternate names:

Selectivity

True negative rate

1− α

P(∼B|∼A) =
933

933 + 5
= 99.5%
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Definition of Metrics

Summary: Sensitivity and Specificity

Sensitivity: P(B|A) =
TP

TP + FN

Specificity: P(∼B|∼A) =
TN

TN + FP

Pros

Direct properties of test∗

No explicit dependence on
prevalence∗

Paired metrics describe
both inclusive and
exclusive actions

Cons

Affected by patient/disease
spectrum

Not always intuitive

Not the most relevant
quantities for
prediction/diagnosis
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Definition of Metrics

P(B|A) −→ P(A|B)

P(∼B|∼A) −→ P(∼A|∼B)

Considering a positive test result:

P(B|A) =
P(A ∩ B)

P(A)
and P(A|B) =

P(B ∩ A)

P(B)

P(A|B) =
P(B|A)P(A)

P(B)
(Bayes’ Rule)

=
P(B|A)P(A)

P(B|A)P(A) + P(B|∼A)P(∼A)
(by LOTP)
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Definition of Metrics

Positive Predictive Value (PPV)

How likely is a patient to have the condition if
s/he tests positive?

P(A|B) =
P(B|A)P(A)

P(B|A)P(A) + P(B|∼A)P(∼A)

=
TP

TP + FP

P(B|A) = Sensitivity

P(A) = Prevalence =
TP + FN

TP + TN + FP + FN

P(B|∼A) = (1 - Spec.) = False Pos. Rate = α

P(∼A) = (1 - Prevalence)

P(A|B) =
55

55 + 5
= 91.7%
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Definition of Metrics

Negative Predictive Value (NPV)

How likely is a patient to not have the
condition if s/he tests negative?

P(∼A|∼B) =
P(∼B|∼A)P(∼A)

P(∼B|∼A)P(∼A) + P(∼B|A)P(A)

=
TN

TN + FN

P(∼B|∼A) = Specificity

P(∼A) = (1 - Prevalence)

P(∼B|A) = (1 - Sens.) = False Neg. Rate = β

P(A) = Prevalence

P(A|B) =
933

933 + 7
= 99.3%
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Definition of Metrics

Summary: Positive and Negative Predictive Values

PPV: P(A|B) =
TP

TP + FP

NPV: P(∼A|∼B) =
TN

TN + FN

Pros

Paired metrics describe
both inclusive and
exclusive actions

Relevant to prediction
(diagnosis of individual
patients)

Cons

Explicit dependence on
prevalence

Computation for prediction
neither straightforward nor
intuitive
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Definition of Metrics

Define Likelihood Ratio:

LR ,
likelihood of result if patient has condition

likelihood of result if patient does not have condition

One likelihood ratio for each test result {B, ∼B}:

+LR =
P(B|A)

P(B|∼A)
=

Sens

1− Spec
=

TP(TN + FP)

FP(TP + FN)
=

TP

FP
· P(∼A)

P(A)

−LR =
P(∼B|A)

P(∼B|∼A)
=

1− Sens

Spec
=

FN(TN + FP)

TN(TP + FN)
=

FN

TN
· P(∼A)

P(A)

+LR =
0.8871

1− 0.9947
= 167 −LR =

1− 0.8871

0.9947
= 0.11
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Definition of Metrics

Plugging +LR into PPV and –LR into NPV Formulas:

PPV = P(A|B) =
(+LR)·P(A)

(+LR)·P(A) + P(∼A)

NPV = P(∼A|∼B) =
P(∼A)

P(∼A) + (−LR)·P(A)

Direct Mapping

Prior −→ Posterior
Population −→ Individual

Fagan 1975, Deeks and Altman 2004
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Odds vs. Probability

Odds of Rice: 1:2 = 0.5

Probability of Rice:
1

3
= 0.33

http://recipesbyrose.com
https://hilliardstudiomethod.com
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Odds vs. Probability

Odds of Disease: 1:19 = 0.053

Probability of Disease:
1

20
= 0.050

http://www.clipartall.com
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Odds vs. Probability

Odds =
Probability

1− Probability
=

P(Event)

P(∼Event)

Probability =
Odds

1 + Odds
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Definition of Metrics

Define Prior and Posterior Odds of Having Condition:

Prior Odds =
TP + FN

FP + TN
=

P(A)

P(∼A)

Posterior Odds =


TP

FP
=

P(A|B)

P(∼A|B)
if test result is positive

FN

TN
=

P(A|∼B)

P(∼A|∼B)
if test result is negative
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Definition of Metrics

Posterior Odds for a Positive Test Result:

P(A|B)

P(∼A|B)
=

1

P(∼A|B)
·P(B|A)P(A)

P(B)

=
(+LR)·P(B|∼A)P(A)

P(∼A|B)P(B)

=
(+LR)·P(B|∼A)P(A)(
P(B|∼A)P(∼A)

P(B)

)
P(B)

= (+LR)
P(A)

P(∼A)

Posterior Odds = (+LR) · (Prior Odds)
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Definition of Metrics

Posterior Odds for a Negative Test Result:

P(A|∼B)

P(∼A|∼B)
=

1

P(∼A|∼B)
·P(∼B|A)P(A)

P(∼B)

=
(−LR)·P(∼B|∼A)P(A)

P(∼A|∼B)P(∼B)

=
(−LR)·P(∼B|∼A)P(A)(
P(∼B|∼A)P(∼A)

P(∼B)

)
P(∼B)

= (−LR)
P(A)

P(∼A)

Posterior Odds = (–LR) · (Prior Odds)



30/55

Introduction Probabilistic Foundation Clinical Use Cases Emerging Technologies Summary

Definition of Metrics

Summary: Positive and Negative Likelihood Ratios

+LR:
P(B|A)

P(B|∼A)
=

Sens

1− Spec
=

TP(TN + FP)

FP(TP + FN)

–LR:
P(∼B|A)

P(∼B|∼A)
=

1− Sens

Spec
=

FN(TN + FP)

TN(TP + FN)

P(A|∼B)

P(∼A|∼B)
= (LR)

P(A)

P(∼A)

Pros

Paired metrics describe
both inclusive and
exclusive actions

No explicit dependence on
prevalence∗

Intuitive effect on odds

Extensible beyond binary

Cons

+LR = 0 if TP = 0; –LR
undefined if TN = 0

Thinking in terms of odds
can be confusing

Prediction requires
estimate of prior odds
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Definition of Metrics

Summary: Diagnostic Odds Ratio

DOR:
+LR

−LR =
Sens · Spec

(1− Sens)(1− Spec)
=

TP · TN
FP · FN

DOR =
933 · 55

5 · 7 = 1466

Pros

Single number
characterization

No explicit dependence on
prevalence∗

Cons

Unable to distinguish
between inclusive and
exclusive actions

Not always intuitive

Not the most relevant
quantity for
prediction/diagnosis
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Definition of Metrics
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Definition of Metrics

Summary: ROC Analysis

AUC: Area under plot of Sens vs. (1-Spec.) for all possible
threshold values

Pros

Single number
characterization (AUC)

Visualization of trade-off
between inclusive and
exclusive action

Independent of actual
threshold choice

Cons

AUC is not
trajectory-specific

Not always intuitive

Not the most relevant
quantity for
prediction/diagnosis
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Definition of Metrics

Overall Accuracy

How frequently does the test make the correct
classification?

Average of sensitivity and specificity, weighted
by prevalence

P(B|A)P(A) + P(∼B|∼A)P(∼A) =
TP + TN

TP + TN + FP + FN

Alternate names:

Diagnostic Accuracy

Test Efficiency

Rand Index

P(B|A)P(A) + P(∼B|∼A)P(∼A) =
55 + 933

55 + 933 + 5 + 7
= 98.8%
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Definition of Metrics

Summary: Overall Accuracy

P(B|A)P(A) + P(∼B|∼A)P(∼A) =
TP + TN

TP + TN + FP + FN

Pros

Single number
characterization

Intuitive meaning

Cons

Unable to distinguish
between inclusive and
exclusive actions

Not the most relevant
quantity for
prediction/diagnosis

Explicit dependence on
prevalence
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Implications for Test Development

Dependence on Prevalence

Prevalence = P(A) = Π

Accuracy = Sens · Π + Spec · (1− Π)

PPV =
Sens · Π

Sens · Π + (1− Spec)(1− Π)

NPV =
Spec · (1− Π)

Spec · (1− Π) + (1− Sens) · Π
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Implications for Test Development

Even prevalence-independent metrics affected by spectrum:
easier to discriminate when A and ∼A are farther apart

Study design is very important
Some journals have guidelines for diagnostic test validation (e.g.
STARD Statement: stard-statement.org)
Case-control studies not recommended for validating diagnostic tests
Case group (A): multiple severities, various anatomic/pathological
sizes
Control group (∼A): same process in different location, different
process in same location

Choosing the best metric
Discrimination or prediction?
Select threshold weighing costs of FN, FP (ROC analysis)
Can establish confidence intervals for each metric and run
hypothesis tests (see Altman 2000)

Ransohoff and Feinstein 1978; Maxim, et. al. 2014
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How good is my diagnostic test?

By the numbers:

Sensitivity: 88.7%

Specificity: 99.5%

Positive Predictive Value: 91.7%

Negative Predictive Value: 99.3%

Positive Likelihood Ratio: 167

Negative Likelihood Ratio: 0.11

Diagnostic Odds Ratio: 1466

AUC: 0.997

Overall Accuracy: 98.8%

But... is it actually
a good test?
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Outline

1 Introduction
What is a diagnostic test?
Motivational example: Am I pregnant?

2 Probabilistic Foundation
Visualizing study results
Definition of metrics
Implications for test development

3 Clinical Use Cases

4 Emerging Technologies
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Clinical Use Cases

Typical Thought Process

1 What is the patient’s pre-test probability?
2 Is testing appropriate?

Will test result change recommended
treatment?
What are patient’s treatment goals?
Is pre-test probability near treatment
threshold?

3 Which test is most appropriate?

What costs are associated with FNs and
FPs?
Examine +LR for ruling-in condition or
–LR for ruling-out

4 What do the test results mean for this
particular patient?

https://totallyaddconnect.com/wp-content/uploads/2012/10/RickSlideRule.jpg
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Emerging Diagnostic Technologies

Esteva 2017: Thrun Lab CNN Dermatology Example

Esteva, et. al. 2017; https://www.technologyreview.com
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Summary

Most metrics derived from a 2x2 confusion matrix

Discrimination (sorting) vs. prediction (diagnosis)

Metrics only as good as their validation studies

Sensitivity and specificity of primary importance for
discrimination, though ±LR may be more intuitive

Clinical diagnosis follows a Bayesian framework

Good scientific and clinical judgment is crucial in
development, selection, and application of diagnostic tests

Inspired by table at: https://en.wikipedia.org/wiki/Confusion matrix
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